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§ Technology Area: Eigensolver
§ FASTMath Tasks

• Solving nonlinear eigenvalues from DFT based electronic structure calculations 
• Solving tensor eigenvalue problems

- finite dimensional spin models with disorder
- infinite dimensional spin models with translational invariance

• Greedy algorithm for nuclear configuration interaction calculations
• Model order reduction for linear response eigenvalue problem

§ Applications Impacted
• Enable computational chemist to study electronic properties of catalytic 

materials
• Enable EFRC researchers to study localization and thermalization properties of 

quantum materials that depend on the interplay between many-body interaction 
and disorder

• Enable material scientists to study thermodynamic limit of quantum materials
• Enable nuclear physicists to have a better understanding of light nuclei
• Enable chemists to simulate/predict optical properties of molecules/materials

Overview



§ Important for catalysis materials simulation
§ ! " " = "Λ,  "%" = &,  " ∈ ℂ)×)+
§ Challenges

Ø Need to compute many eigenpairs for large systems (,- ≪ ,, 
but can still be large (>105), Rayleigh-Ritz becomes a bottleneck

Ø Be able to handle hybrid functionals (! is not sparse but has 
structure

§ Strategies
Ø Break the spectrum into slices (spectrum slicing)

Ø Reformulate as unconstrained minimization
Ø Use low rank approximation

Eigensolver for density functional theory
based electronic structure calculations
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§ How to partition the spectrum optimally when the 
spectrum is unknown?
Ø Initial partition based on multi-resolution Lanczos density of 

state estimation
§ How to adjust the partition when the matrix changes in 

a nonlinear (SCF) outer iteration
Ø Subsequent partition based on K-means clustering

Spectrum partition for spectrum slicing



Spectrum Slicing Performance

§ Standard EVP
§ n = 17,077
§ Dense
§ Compute all 

eigenpairs



Unconstrained CG-based eigensolver

Strong scaling for bulk liquid 
water with 1024, 2048 and 
4096 molecules, with the 

preconditioner that leads to 
the fastest time to solution 

(38% of the full machine for 
the largest system).

§ min$ Tr '()Χ+,Χ ,  ' = Χ+Χ,  Ψ = Χ'(
/
0

§ Functional has same minimum as constrained 
functional, trial eigenvectors orthogonal at minimum

Mauri and Galli, Electronic-structure 
calculations and molecular-dynamics 
simulations with linear system-size 
scaling, Phys. Rev. B 50, 4316 (1994) 



§ Many-body eigenvalue problem formulated in Fock
(tensor product) space via second quantization
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§ Natural formulation for quantum computing
§ Allow compact representation of the operator and the 

eigenvector in tensor product space
§ Efficient algorithms such as density matrix renormalization 

group (DMRG) can be used to compute desired 
eigenpairs

Tensor Eigenvalue Problem



§ Heisenberg Spin model with random disorder ℎ":
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§ Tensor Eigenvalue Problem #0 = 10,
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§ Need to compute many eigenvalues many times for 
different realizations of ℎ" (D)

Eigenvalues of a disordered spin chain
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critical transition
Adjacent gap ratio:
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§ Problem dimension: 
!
!/2 , e.g. L = 34 yields 2.3×10)

§ The larger the problem, the more clustered interior 

eigenvalues are

§ New approach:

• Use LOBPCG to compute the largest eigenvalues of * − ,-. /

• Precondition by solving * − ,-. /0 = 2 with PCG

• Multiple linear systems solved simultaneously

• Matrix-free *0 block-matvec

• Multiple levels of concurrency

Iterative solution of tensor eigenvalue problem
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disorder strength

disorder realizations



§ Can perform each calculation 
(one realization of one disorder 
strength for one eigenvalue 
region with 32 eigenvalues) on 
a single node for up to L = 28

§ Cori single KNL node:
• 68 cores @ 1.4 GHz

§ Typically 10-100 iterations of 
LOBPCG (depending on 
number of PCG iterations) to 
reach 10-6 accuracy in 
eigenvalue

§ For larger L, vectors need to be 
distributed among different 
nodes (in progress)

Results and performance



§ Heisenberg spin model ! = ∑$%&'' )⃗$ ⋅ )⃗$+,

§ Solve !- = .-, where
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'
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§ Interested in the lowest eigenvalue (in average sense)
§ Enable scientists to understand the

thermodynamic limit of many-body models
§ Can start with a finite model with 4 spins and gradually 

increase 4, but limited to modest 4 (<100)
§ Better to take the translational invariance nature of !

Infinite dimensional tensor eigenvalue problem

⋯⋯ 5 5 + 1



§ Eigenvector ! is an infinite dimensional tensor 
§ Take advantage of translational invariance by using 

compact representation: each element can be 
approximated by

! ⋯ , $%&, $', $&,⋯ ≈ Trace .
/0%1

1
2($/)

where 2($/) is an 5×5 matrix, where 5 is the rank.

§ Related to tensor train

Tensor ring representation of eigenvector



§ Compute the smallest eigenvalue (ground state) of !
by computing the largest eigenvalue of "#$% for some 
“small” & using the power method

§ Need to multiply "#$% with a tensor ring approximation 
of ' efficiently and preserve the tensor ring structure
• Use Trotter splitting to approximate

"#$% ≈ )
*+#,

,

"#$-%

where !* = ⋯ 0 ⊗2⊗ 0⋯ and "#$-% = ⋯ 0 ⊗ "#3% ⊗ 0⋯
• Separate the even/odd terms in ∏*+#,

, "#$-%

Matrix exponential and flexible power iteration

contraction diagram
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Convergence

§ Heisenberg spin model
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'
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§ Exact solution:
- = −log(2) + 0.25



§ Green’s Function Coupled Cluster Method
• Powerful many-body tool for computing and 

analyzing the electronic structure of molecules
• Avoid solving large eigenvalue problems
• Require many different large linear system solves

§ Model Order Reduction
• Construct linear dynamical system s.t. transfer 

function corresponds to Green’s function
• Project large system onto subspace
• Building subspace only requires a few large system 

solves

Model Order Reduction for
Linear Response Eigenvalue Problem



Model Order Reduction for
Linear Response Eigenvalue Problem 

Spectral functions of the 1,3-
butadiene, benzene, and adenine 
molecules in the core and valence 
energy regimes directly computed 
by the conventional GFCCSD 
method (green shadow) and 
interpolated and extrapolated by 
their reduced order models (blue 
dashed line) with η = 0.027 eV and 
Δω ≤ 0.027 eV.



§ SciDAC Partnership
• BES SciDAC on catalysis simulation (electronic structure 

calculations, nonlinear eigenvalue problem)

• NP SciDAC on light nuclei structure: large-scale configuration 
interaction calculation (many-body eigenvalue problem)

§ Non-SciDAC
• BES EFRC (J. Moore): tensor eigenvalue problem (many-body 

localization, tensor ring approximation)

• BES Computational Materials Science (S. Louie): linear 
response eigenvalue problem

• BES Computational Chemical Science (X. Sortiris): linear 
response eigenvalue, model order reduction

Collaboration with applications
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§ Regularize the DOS to make it smooth:
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§ k-step Lanczos tridiagonalization (7 ≪ 9)
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§ Solve a small dimensional eigenvalue problem >DE = FEDE

§ Approximate DOS: 
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§ Cumulative DOS (CODS):
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Spectrum estimation by Lanczos


